Preparation of nm-sized BaTiO₃ particles using a new 2-step thermal decomposition of barium titanyl oxalate

S. WADA, M. NARAHARA, T. HOSHINA, H. KAKEMOTO, T. TSURUMI Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan E-mail: swada@ceram.titech.ac.jp

To obtain inpurity-free and nm-sized barium titanate (BaTiO₃) particles, a new 2-step thermal decomposition method from barium titanyl oxalates (BaTiO(C₂O₄)₂ · 4H₂O) was proposed. At the 1st step, BaTiO(C₂O₄)₂ · 4H₂O was annealed at 400°C for 1 h in the O₂ flow. The annealing temperature of 400°C was chosen for the following reasons; (1) no formation of BaCO₃ and TiO₂ and (2) the complete removal of H₂O and other carbon species. This compound obtained at 400°C was amorphous phase, and its chemical composition was BaCO₃-TiO₂. When this compound was annealed in air at higher temperatures, the large BaTiO₃ particles were prepared with by-products such as BaCO₃. Thus, at the 2nd step, to prevent the crystal growth and the formation of BaCO₃, this compound was annealed above 600°C in vacuum. Finally, the BaTiO₃ single crystals with a size with 16.5 nm were prepared around 620°C. These BaTiO₃ fine particles were characterized using various methods to investigate defects and impurities in the particles. As a result, it was confirmed that there was no impurity in the BaTiO₃ lattices. © *2003 Kluwer Academic Publishers*

1. Introduction

Ferroelectric BaTiO₃ fine particles have been used as raw materials for electronic devices such as multilayered ceramic capacitors (MLCC). Recently, with the miniaturization of electronic devices, the down-sizing of MLCC has been developed and accelerated. As a result, the thickness of dielectric layers in MLCC became less than 1 μ m, and in the future, it is expected that this thickness will become less than 0.5 μ m. Consequently, BaTiO₃ raw materials with particle size from a few hundred nm to a few ten nm will be required. However, in ferroelectric fine particles, it was well-known that ferroelectricity decreases with decreasing particle and grain sizes, and disappears below certain critical sizes; this is called the "size effect" in ferroelectrics [1–9]. Therefore, the size effect in ferroelectrics such as BaTiO₃ is one of the most important phenomena for the industry and science. To date, some researchers have estimated the critical size to be around 10–20 nm in BaTiO₃ fine particles [9–12]. However, this critical size is just an estimated value, and there is no experimental evidence on the critical size. Thus, it is very important to prepare BaTiO₃ ferroelectric crystals with sizes below the estimated critical size, and investigate their size effect. However, it is very difficult to prepare impurity-free and nm-sized BaTiO₃ crystallites using the conventional wet processes such as the sol-gel [13], hydrothermal [14] and low temperature direct synthesis (LTDS) methods [15, 16]. Especially, the existence of the lattice hydroxyl (OH⁻) group was so negative for the ferroelectricity of BaTiO₃. This means that the lattice OH⁻ group was a common problem for the wet-process derived BaTiO₃ fine particles [13–16]. Therefore, to prepare impurity-free and nm-sized BaTiO₃ crystals below 10 nm, a new innovative preparation method, except for all of the solution methods, is required.

Normally, a thermal decomposition of BaTiO $(C_2O_4)_2 \cdot 4H_2O$ leads to a formation of large BaTiO₃ particles over 1 μ m, via the intermediate compounds such as BaCO₃ and TiO₂ [17–19]. However, there is a significant advantage that a Ba/Ti atomic ratio of the prepared BaTiO₃ is completely 1.000 because of the Ba/Ti atomic ratio of 1.000 in BaTiO(C_2O_4)₂ · 4H₂O. If nm-sized BaTiO₃ particles are prepared from BaTiO(C_2O_4)₂ · 4H₂O, it is possible to obtain the impurity-free, defect-free and nm-sized BaTiO₃ particles. The large particle sizes of BaTiO₃ particles derived from BaTiO(C_2O_4)₂ · 4H₂O is caused by the formation of BaTiO₃ via a reaction between BaCO₃ and TiO₂ at higher temperatures over 850°C. Thus, it is very important to prevent the formation of these intermediate compounds. For this purpose, the optimum condition for the thermal decomposition of $BaTiO(C_2O_4)_2 \cdot 4H_2O$ must be refined to obtain impurity-free and nm-sized BaTiO₃ crystallites, i.e., atmosphere, heating and cooling rate, temperature and soaking time.

In this study, we try to prepare impurity-free and nmsized BaTiO₃ crystallites from $BaTiO(C_2O_4)_2 \cdot 4H_2O$. For this objective, we propose a new thermal decomposition method of $BaTiO(C_2O_4)_2 \cdot 4H_2O$ using the both atmosphere of the O_2 flow and vacuum.

2. Experimental

2.1. Preparation procedure

Barium titanyl oxalates (BaTiO(C_2O_4)₂ · 4H₂O) were prepared at Fuji Titanium Co., Ltd [20]. The Ba/Ti atomic ratio of this compound was 1.000 and the amount of the impurity was less than 0.02% [20]. Fig. 1 shows TGA-DTA curves of this BaTiO(C_2O_4)₂ · 4H₂O measured at a heating rate of 10°C/min in air. Over 710°C, no weight loss was observed, which suggests the formation of BaTiO₃ particles. Normally, to prepare BaTiO₃ particles from BaTiO(C_2O_4)₂ · 4H₂O, the higher temperatures over 1000°C were used in air, but in this case, the larger BaTiO₃ particles with sizes around 1 μ m were obtained. Hence, if the temperature can decrease down to 710°C, the formation of the smaller BaTiO₃ particles with sizes below 100 nm is expected. Thus, the conditions of the normal thermal decomposition in air were optimized using (1) the various temperatures from 100°C to 1000°C and (2) the various soaking times from 0 h to 5 h. On the other hand, to investigate the effect of the atmosphere, the vacuum and the O₂ flow atmosphere were used. This is because (a) a decrease of the decomposition temperature of $BaCO_3$ in vacuum and (b) an easy removal of the carbon species from $BaTiO(C_2O_4)_2 \cdot 4H_2O$ can be expected. In this study, the special designed quartz reactor chamber was used for the ease change from the O_2 flow to the vacuum.

2.2. Characterization

The crystal structure of the products was investigated at 25°C using a powder X-ray diffractometer (XRD) (RINT2000, Rigaku, Cu-ka, 50 kV, 30 mA) and a laser Raman scattering spectrometer (Raman) (NRS-2100, Jusco, 514 nm, 100 mW). The average particle sizes and crystallite sizes were estimated using a transmission electron microscope (TEM) (CM300, Philips, 300 kV) and XRD. The impurity in the products was analyzed using a Fourier transform infrared spectrometer (FT-IR) (SYSTEM 2000 FT-IR, Perkin Elmer) and by differ-

Figure 1 TGA-DTA curves of $BaTiO(C_2O_4)_2 \cdot 4H_2O$.

ential thermal analysis with thermogravimetry (TGA-DTA) (TG-DTA2000, Mac Science).

3. Results and discussion

3.1. The conventional thermal decomposition method in air

the thermal decomposition of Normally, $BaTiO(C_2O_4)_2 \cdot 4H_2O$ over $1000^{\circ}C$ leads to the formation of the large BaTiO₃ particles over 1 μ m [17–19]. Recently, Kajita and Nishido reported that the thermal decomposition at 850°C leads to the formation of the BaTiO₃ particles with sizes of 150 nm [20]. This means that if the conditions for the conventional thermal decomposition are optimized, it is expected to prepare the smaller BaTiO₃ particles below 100 nm. Fig. 2 shows a XRD pattern of the products prepared at 700°C for 1 h. As a main product, the formation of the cubic BaTiO₃ particles was confirmed while as a by-product, a slight amount of BaCO₃ was also observed. The crystallite size D₁₁₁ was calculated from a FWHM of (111) plane around 39° using Scherrer's equation. It should be noted that a SrTiO₃ crystal as an external standard for the correction of FWHM. As a result, D_{111} was estimated at around 50 nm. Moreover, TEM observation also revealed that two kinds of particles were observed, and the average BaTiO₃ particle size was around 45 nm. On the other hand, when the temperatures below 700°C was used for the thermal decomposition, no BaTiO₃ particles were prepared. These results revealed that it was very difficult to prepare the nm-sized BaTiO₃ crystallites using the conventional thermal decomposition method in air.

3.2. The thermal decomposition method in vacuum

In vacuum, it can be possible to prepare the impurityfree and nm-sized BaTiO₃ fine particles below 50 nm. This is because it is expected that the vacuum atmosphere can make the decomposition temperature of BaCO₃ lower than that in air. Thus, the thermal decomposition of BaTiO(C₂O₄)₂ · 4H₂O in vacuum was performed at various temperatures from 500°C to 750°C

Figure 2 A XRD pattern of the products prepared at 700° C for 1 h in air.

Figure 3 A XRD pattern of the products prepared at 620° C for 1 h in vacuum.

for 1 h. Fig. 3 shows an XRD pattern of the products prepared at 620°C for 1 h in vacuum of 2.3×10^{-2} torr. The FWHMs of all peaks were broadened, which suggests that their crystallite size was extremely small below 10 nm. However, all of the XRD peaks in Fig. 3 were assigned to the hexagonal BaTiO₃. Moreover, the color of these particles was completely black. This means that in the hexagonal BaTiO₃ particles, there may be the residual carbon or a reduction of titanium ions from +4 to +3, i.e., the hexagonal BaTiO₃ was prepared under the reduced atmosphere. Some researchers reported that the reduced atmosphere caused the formation of the hexagonal BaTiO₃ because of the oxygen deficiency [21–23]. For our objective, the hexagonal $BaTiO_3$ is an undesirable phase, and the oxygen deficiency leads to the defect structure such as oxygen vacancies in the BaTiO₃ lattice. Thus, to remove the residual carbon and oxygen vacancies, these hexagonal BaTiO₃ particles were annealed at 400°C for 15 h in the O₂ flow. This oxidizable treatment made the color of the particles gray, which means that the residual carbon still remained, and its XRD pattern was completely the same as Fig. 3. These results revealed that it was very difficult to prepare the impurity-free BaTiO₃ crystallites using the thermal decomposition method in vacuum.

3.3. A proposal of a new 2-step thermal decomposition method

The above two methods had several merits and demerits. The thermal decomposition in air could produce the cubic $BaTiO_3$ crystallites, but its problems were the larger crystallite sizes and the formation of $BaCO_3$. On the other hand, the thermal decomposition process in vacuum can produce the nm-sized $BaTiO_3$ crystallites, but its problems are the formation of hexagonal phase and residual carbon. Therefore, if we can combine these two processes, it may be possible to prepare impurity-free and nm-sized $BaTiO_3$ crystallites.

In the former process, the BaTiO₃ particles were prepared via intermediates such as BaCO₃ and TiO₂. Thus, the reaction of BaCO₃ with TiO₂ was the ratedetermining stage in the BaTiO₃ formation, and its reaction temperature was over 700°C. At the high temperature around 700°C, as the growth rate of BaTiO₃ is very fast, the larger $BaTiO_3$ crystallites can be obtained easily. Therefore, to reduce the temperature of the $BaTiO_3$ formation, it is important to prevent the formation of $BaCO_3$ phase as the intermediate.

In the latter process, the nm-sized BaTiO₃ particles were prepared as the hexagonal phase with residual carbon. As the above mentioned, this hexagonal phase with the residual carbon was attributed to the reduced atmosphere, which originated from the low temperature decomposition of BaTiO(C_2O_4)₂ · 4H₂O in vacuum. Thus, if the decomposition of $BaTiO(C_2O_4)_2 \cdot 4H_2O$ into an amorphous intermediate with a chemical composition of BaCO₃-TiO₂ is performed in the O₂ flow, we can expect that there is no oxygen deficiency in the amorphous intermediates. After this stage, even if the BaTiO₃ formation from the amorphous intermediates is done in vacuum, there is no reduced atmosphere. Moreover, it is expected that the vacuum can make the decomposition temperature of BaCO₃ much lower. Therefore, to prepare the impurity-free and nm-sized BaTiO₃ crystallites from BaTiO(C_2O_4)₂ · 4H₂O, it is important to combine two processes, i.e., (I) the low temperature decomposition of BaTiO(C_2O_4)₂ · 4H₂O in the O₂ flow and (II) the BaTiO₃ formation from the amorphous intermediates with a chemical composition of BaCO₃- TiO_2 in vacuum. We named this new method a 2-step thermal decomposition method.

3.4. The preparation of BaTiO₃ crystallites using the 2-step thermal decomposition method

At the 1st step, BaTiO(C_2O_4)₂ · 4H₂O was annealed at various temperatures from 100°C to 450°C for 1 h in the O₂ flow. As a result, below 400°C, it was confirmed that there was no complete decomposition of BaTiO(C_2O_4)₂ · 4H₂O, while above 400°C, a slight formation of BaCO₃ phase was also detected. It should be noted that the color of the products annealed at 400°C was clear white. This means that a thermal decomposition under the oxygen atmosphere was done without the reduction of titanium ions from +4 to +3. Figs 4 and 5 show an XRD pattern and a Raman scattering spectrum of the products annealed at 400°C for 1 h in the O₂ flow, respectively. In Fig. 4, although

Figure 4 A XRD pattern of the products prepared at 400° C for 1 h in the O₂ flow.

Figure 5 A Raman scattering spectrum of the products prepared at 400° C for 1 h in the O₂ flow.

several unknown broad peaks were observed, most of the products were assigned to the amorphous phase. If BaTiO(C_2O_4)₂ · 4H₂O is completely decomposed into BaCO₃ and TiO₂ phases, the weight loss can be calculated at 38.3%. The experimental weight loss at 400°C was almost similar to this one. Therefore, this result suggests that the prepared amorphous phase in Fig. 4 can have the chemical composition of BaCO₃-TiO₂. The Raman spectrum in Fig. 5 indicated one significant broad peak. Though this peak was composed of the overlapping of the several broad peaks, we cannot separate the peak into the several peaks. However, this means that there was the disordered lattice vibration like a molecule, i.e., no long range ordering or less long range ordering. Now, we believe that the local structure of the amorphous compounds is closed to the structure with a random network of the BaCO₃ and the TiO₂ molecules.

At the 2nd step, the amorphous intermediate compounds were annealed at various temperatures from 550° C to 750° C for 0.5 h in vacuum. As a result, above 600° C, the BaTiO₃ formation was confirmed. It should be also noted that the color of these products were clear white. Figs 6 and 7 show an XRD pattern and a Raman scattering spectrum of the products annealed at 620° C for 0.5 h in vacuum, respectively. In Fig. 6, most of the clear peaks were assigned to the cubic BaTiO₃ phase.

Figure 6 A XRD pattern of the products prepared at 620° C for 0.5 h in vacuum.

Figure 7 A Raman scattering spectrum of the products prepared at 620° C for 0.5 h in vacuum.

This assignment to the cubic phase was caused by the following two reasons, i.e., (1) no splitting of (002) and (200) planes around 45° , and (2) a good agreement of *a-axis* calculated using (111) plane with *a-axis* calculated using (200) plane. However, two very weak and broad peaks were observed around 27° and 42.4° , and these peaks were assigned to the hexagonal BaTiO₃ phase. Moreover, the Raman spectrum in Fig. 7 indicated that most of the peaks were assigned to the tetragonal BaTiO₃ phase while a peak at 640 cm^{-1} was assigned to the hexagonal BaTiO₃ phase [24, 25]. However, there are some questions about the formation of hexagonal BaTiO₃ phase. Recently, Cho et al. reported that the cubic BaTiO₃ fine crystallites with nanotwins of (111) plane were assigned to the hexagonal phase using XRD and Raman [26-28]. To clear the assignment of these peaks, much investigations will be required. Therefore, now we stop discussing about the formation of the hexagonal BaTiO₃ phase or the formation of the nanotwin structure.

3.5. The characterization of the prepared BaTiO₃ crystallites

The BaTiO₃ powders annealed at 620°C for 0.5 h in vacuum were characterized using various methods. At first, their crystallite size was estimated by a XRD measurement with a slow scanning rate of 0.1° /min. Fig. 8 shows the (111) plane of the BaTiO₃ powders and the (111) plane of the SrTiO₃ single crystals as a standard material. The crystallite size D_{111} of the BaTiO₃ powders was calculated from a FWHM of (111) plane using Scherrer's equation. It should be noted that a position of peak top and FWHM of (111) plane were corrected using the (111) plane of the $SrTiO_3$ single crystals. As a result, D_{111} was estimated at around 17 nm. Moreover, TEM observation revealed that the average BaTiO₃ particle size is around 16.5 nm as shown in Fig. 9a. Fig. 9a also indicates that one particle was a single crystal, and there is no twinning structure. Moreover, its selected area electron diffraction (SAED) pattern (Fig. 9b) revealed that its crystal structure was assigned to the cubic phase of the BaTiO₃. These results suggested that the 2-step thermal decomposition method is very effective to prepare the nm-sized BaTiO₃ crystallites.

Figure 8 (111) planes of both: (a) the BaTiO₃ powders prepared at 620° C for 0.5 h in vacuum and (b) a SrTiO₃ single crystal as a reference.

Figure 9 A TEM: (a) bright-field image and (b) SAED pattern of the BaTiO₃ powders prepared at 620° C for 0.5 h in vacuum.

To investigate the impurity in the nm-sized $BaTiO_3$ crystallites, TGA-DTA and FT-IR measurements were performed. Fig. 10 shows the TGA-DTA curves of the nm-sized $BaTiO_3$ crystallites annealed at $620^{\circ}C$ for 0.5 h in vacuum. This measurement was stopped

Figure 10 TGA-DTA curves in the BaTiO₃ powders prepared at 620° C for 0.5 h in vacuum.

Figure 11 FT-IR spectra of (a) the BaTiO₃ powders prepared at 620° C for 0.5 h in vacuum and (b) BT-01 as a reference.

at 600°C to avoid the crystal growth of the nm-sized BaTiO₃ crystallites. A large weight loss of around 4% was detected for the nm-sized BaTiO₃ crystallites. In general, it is well-known that the nm-sized particles shows a lot of weight loss over 10% by the adsorbed species because of their huge specific surface areas over $100-200 \text{ m}^2/\text{g}$. To confirm the possibility of the weight loss by the adsorbed species, after the 1st measurement of TGA-DTA curves, these powders were cooled in the atmosphere, and the TGA-DTA curves were remeasured using the same powders. As a result, almost same weight loss of around 4% was observed, which suggested that this weight loss was originated from a desorption of the adsorbed species. Moreover, to investigate a kinds of the surface adsorbed species, FT-IR spectra were measured. Fig. 11 shows the FT-IR spectra of the nm-sized BaTiO₃ crystallites and BT-01 (hydrothermal BaTiO₃ crystallites with a size of 100 nm prepared by Sakai Chemical Industry Co.) as a reference. In Fig. 11, there are only two kinds of species such as OH⁻ group and CO₃²⁻ group in the both powders. The height of these absorption bands in the nmsized BaTiO₃ crystallites was much larger than those in BT-01. This means that the amount of the surface adsorbed species in the nm-sized BaTiO₃ crystallites is much larger than that in the BT-01.

In general, it is well-known that in the hydrothermal BaTiO₃ crystallites, there are two kinds of OH⁻ groups such as (a) a surface adsorbed OH⁻ group and (b) a lattice OH⁻ group. The FT-IR measurement is very useful to reveal the existence of these two kinds of OH⁻ group. Kapphan and Weber reported that proton of the lattice OH⁻ group can exist in five sites around lattice oxygen in BaTiO₃ lattice, and their sharp absorption bands for stretching vibration appear in the narrow range from 3462.5 to 3509.5 cm⁻¹ [29]. Fig. 12 indicates FT-IR spectra of the OH⁻ groups in the nm-sized BaTiO₃ crystallites and BT-01. In the BT-01, two kinds of the OH⁻ group bands were clearly observed, i.e., (I) a sharp band around 3510 cm^{-1} and (II) a broad band from 3000 to 3700 cm^{-1} . On the basis of the report by Kapphan and Weber, the sharp band around 3510 cm^{-1} in BT-01 of Fig. 12 can be assigned to O-H stretching vibration of lattice OH⁻ group, which suggests that in BT-01, there can exist lattice

Figure 12 The absorption bands related to the OH^- groups of (a) the BaTiO₃ powders prepared at 620°C for 0.5 h in vacuum and (b) BT-01 as a reference.

 OH^- group. On the other hand, in the nm-sized BaTiO₃ crystallites, there was no sharp band around 3510 cm⁻¹ while there was a large broad band from 3000 to 3700 cm⁻¹. These results suggested that there was no lattice OH^- group in the nm-sized BaTiO₃ crystallites.

The above characterization revealed that the nmsized BaTiO₃ crystallites prepared by the 2-step thermal decomposition method using BaTiO(C_2O_4)₂ · 4H₂O had no impurity in their lattice except for the surface. Thus, we believe that the 2-step thermal decomposition method is very powerful to prepare nm-sized and impurity-free BaTiO₃ crystallites. In the future, the dielectric constants of these BaTiO₃ crystallites should be measured. For this purpose, much harder work will be required.

4. Conclusion

In this study, the new 2-step thermal decomposition method using BaTiO(C_2O_4)₂ · 4H₂O was proposed to obtain inpurity-free and nm-sized BaTiO₃ particles. At the 1st step, $BaTiO(C_2O_4)_2 \cdot 4H_2O$ was annealed at 400°C for 1 h in the O₂ flow. This compound obtained at 400°C was amorphous phase with the chemical composition of BaCO₃-TiO₂. At the 2nd step, the amorphous compound was annealed under vacuum above 600°C. Finally, BaTiO₃ single crystals with a size of 16.5 nm were prepared around 620°C. Their characterization was also done using various methods, and especially, the impurity in these nm-sized BaTiO₃ crystallites was investigated. As a result, as the impurities, the surface adsorbed OH^- and CO_3^{2-} groups and the were detected, but no lattice OH⁻ group was detected using IR. This suggests that the nm-sized BaTiO₃ crystallites have no impurity in their lattice. Therefore, the 2-step thermal decomposition method using BaTiO(C_2O_4)₂ · 4H₂O was very effective to prepare the nm-sized and inpurity-free BaTiO₃ crystallites. This means that the 1st step for a study of the size effect was achieved. At the next step, using the 2-step thermal decomposition method, the BaTiO₃ particles with various particle sizes will be prepared, and their size dependence of the structure and some physical properties will be investigated.

Acknowledgments

The authors would like to thank Mr. M. Nishido of Fuji Titanium Co., Ltd. for preparing high purity barium titanyl oxalates. This study was partially supported by (1) Research Development Program of University-Industry Alliance—A Matching Funds Approach from JSPS), (2) a Grant-in-Aid for Scientific Research (**12450267**) from the Ministry of Education, Science, Sports and Culture, Japan, and (3) Takayanagi Foundation for Electronics, Science and Technology.

References

- 1. K. KINOSHITA and A. YAMAJI, J. Appl. Phys. 45 (1976) 371.
- 2. G. ARLT, D. HENNINGS and G. DE WITH, *ibid.* 58 (1985) 1619.
- 3. K. ISHIKAWA, K. YOSHIKAWA and N. OKADA, *Phys. Rev.* B **37** (1988) 5852.
- 4. K. UCHINO, E. SADANAGA and T. HIROSE, *J. Amer. Ceram. Soc.* **72** (1989) 1555.
- H. IKAWA, in "Dielectric Ceramics; Ceramic Transactions," Vol. 32 (Amer. Ceram. Soc., 1993) p. 19.
- 6. M. H. FREY and D. A. PAYNE, Phys. Rev. B 54 (1996) 3158.
- 7. S. WADA, T. SUZUKI and T. NOMA, *J. Ceram. Soc. Jpn.* **104** (1996) 383.
- 8. K. ISHIKAWA, T. NOMURA, N. OKADA and K. TAKADA, *Jpn. J. Appl. Phys.* **35** (1996) 5196.
- 9. D. McCAULEY, R. E. NEWNHAM and C. A. RANDALL, *J. Amer. Ceram. Soc.* **81** (1998) 979.
- 10. M. TANAKA and Y. MAKINO, Ferroelectric Lett. 24 (1998) 13.
- 11. M. R. SRINIVASAN, M. S. MULTANI, P. AYYUB and R. VUAYARAGHAVAN, *Ferroelectrics* **51** (1983) 137.
- 12. A. J. BELL, A. J. MOULSON and L. E. CROSS, *ibid.* 54 (1984) 147.
- H. MATSUDA, M. KUWABARA, K. YAMADA, H. SHIMOOKA and S. TAKAHASHI, J. Amer. Ceram. Soc. 81 (1998) 3010.
- 14. S. WADA, T. SUZUKI and T. NOMA, J. Ceram. Soc. Jpn. **103** (1995) 1220.
- 15. S. WADA, H. CHIKAMORI, T. NOMA and T. SUZUKI, *J. Mater. Sci.* **35** (2000) 4857.
- 16. S. WADA, H. CHIKAMORI, T. NOMA, T. SUZUKI and T. TSURUMI, *J. Ceram. Soc. Jpn.* **108** (2000) 728.
- 17. K. IIZUMI, K. SOBATA and K. KUDAKA, *ibid.* 92 (1984) 4.
- T. ISSHIKI, K. NISHIDO, M. SHIOJIRI, H. NOGUCHI, Y. DEGUCHI and H. YAMAMOTO, *Elect. Techno.* 31 (1998) 202.
- 19. J. XU, S. TSUTAI, S. HAYASHI, M. SUGI and Z. NAKAGAWA, J. Ceram. Soc. Jpn. 107 (1999) 27.
- 20. T. KAJITA and M. NISHIDO, Ext. Abst. the 9th US-Japan Seminar Dielect. Piezoelect. Ceram., Okinawa (1999) p. 425.
- 21. R. M. GLAISTER and H. F. KAY, *Proc. Phys. Soc.* **76** (1960) 763.
- 22. M. WAKAMATSU, N. TAKEUCHI, G.-C. LAI and S. ISHIDA, J. Ceram. Soc. Jpn. 95 (1987) 1181.
- 23. N. TAKEUCHI, H. TANAKA, M. WAKAMATSU, Y. SAKABE and K. WAKINO, *ibid.* **98** (1990) 836.
- 24. N. G. EROR, T. M. LOEHR and B. C. CORNILSEN, *Ferroelectrics* 28 (1980) 321.
- 25. Y. AKISHIGE, K. KAMISHIMA, J. NAKAHARA and E. SAWAGUCHI, *ibid*. **152** (1994) 225.
- 26. W.-S. CHO, E. HAMADA and K. TAKAYANAGI, *J. Appl. Phys.* **81** (1997) 3000.
- 27. W.-S. CHO, J. Phys. Chem. Solids 59 (1998) 659.
- E. HAMADA, W.-S. CHO and K. TAKAYANAGI, *Phil.* Mag. A 77 (1998) 1301.
- 29. S. KAPPHAN and G. WEBER, Ferroelectrics 37 (1981) 673.

Received 29 July 2002 and accepted 9 April 2003